首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Solvent‐Induced Structural Transition of Self‐Assembled Dipeptide: From Organogels to Microcrystals
Authors:Pengli Zhu  Xuehai Yan Dr  Ying Su  Yang Yang Dr  Junbai Li Prof Dr
Institution:1. Beijing National Laboratory for Molecular Sciences (BNLMS), Key Lab of Colloid and Interface Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 (China), Fax: (+86)?10‐82612629;2. Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam/Golm (Germany);3. National Center for NanoScience and Technology, Beijing, 100190 (China)
Abstract:Organogels that are self‐assembled from simple peptide molecules are an interesting class of nano‐ and mesoscale soft matter with simplicity and functionality. Investigating the precise roles of the organic solvents and their effects on stabilization of the formed organogel is an important topic for the development of low‐molecular‐weight gelators. We report the structural transition of an organogel self‐assembled from a single dipeptide building block, diphenylalanine (L ‐Phe‐L ‐Phe, FF), in toluene into a flower‐like microcrystal merely by introducing ethanol as a co‐solvent; this provides deeper insights into the phase transition between mesostable gels and thermodynamically stable microcrystals. Multiple characterization techniques were used to reveal the transitions. The results indicate that there are different molecular‐packing modes formed in the gels and in the microcrystals. Further studies show that the co‐solvent, ethanol, which has a higher polarity than toluene, might be involved in the formation of hydrogen bonds during molecular self‐assembly of the dipeptide in mixed solvents, thus leading to the transition of organogels into microcrystals. The structural transformation modulated by the co‐solvent might have a potential implication in controllable molecular self‐assembly.
Keywords:hierarchical nanostructures  microcrystals  organogels  peptides  self‐assembly
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号