首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Alkali-metal-ion catalysis and inhibition in the nucleophilic displacement reaction of y-substituted phenyl diphenylphosphinates and diphenylphosphinothioates with alkali-metal ethoxides: effect of changing the electrophilic center from P=O to P=S
Authors:Um Ik-Hwan  Shin Young-Hee  Park Jee-Eun  Kang Ji-Sun  Buncel Erwin
Institution:Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea. ihum@ewha.ac.kr
Abstract:A kinetic study of the nucleophilic substitution reaction of Y‐substituted phenyl diphenylphosphinothioates 2 a – g with alkali‐metal ethoxides (MOEt; M=Li, Na, K) in anhydrous ethanol at (25.0±0.1) °C is reported. Plots of pseudo‐first‐order rate constants (kobsd) versus MOEt], the alkali ethoxide concentration, show distinct upward (KOEt) and downward (LiOEt) curvatures, respectively, pointing to the importance of ion‐pairing phenomena and a differential reactivity of dissociated EtO? and ion‐paired MOEt. Based on ion‐pairing treatment of the kinetic data, the kobsd values were dissected into kurn:x-wiley:09476539:media:CHEM201102404:tex2gif-inf-3 and kMOEt, the second‐order rate constants for the reaction with the dissociated EtO? and ion‐paired MOEt, respectively. The reactivity of MOEt toward 2 b (Y=4‐NO2) increases in the order LiOEt?NaOEt>KOEt>EtO?. The current study based on Yukawa–Tsuno analysis has revealed that the reactions of 2 a – g (P?S) and Y‐substituted phenyl diphenylphosphinates 1 a – g (P?O) with MOEt proceed through the same concerted mechanism, which indicates that the contrasting selectivity patterns are not due to a difference in reaction mechanism. The P?O compounds 1 a – g are approximately 80‐fold more reactive than the P?S compounds 2 a – g toward the dissociated EtO? (regardless of the electronic nature of substituent Y) but are up to 3.1×103‐fold more reactive toward ion‐paired LiOEt. The origin of the contrasting selectivity patterns is further discussed on the basis of competing electrostatic effects and solvational requirements as a function of anionic electric field strength and cation size (Eisenman’s theory).
Keywords:alkali metals  homogeneous catalysis  kinetics  nucleophilic substitution  reaction mechanisms
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号