首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Broadband energy exchanges between a dissipative elastic rod and a multi-degree-of-freedom dissipative essentially non-linear attachment
Authors:Stylianos Tsakirtzis  Panayotis Panagopoulos
Institution:Mechanics Division, Faculty of Applied Mathematical and Physical Sciences, National Technical University of Athens, P.O. Box 64042, GR-157 10 Zografos, Athens, Greece
Abstract:We analyze complex, multi-frequency, non-linear modal interactions in the damped dynamics of a viscously damped dispersive finite rod coupled to a multi-degree-of-freedom essentially non-linear attachment. We perform a parametric study to show that the attachment can be an effective broadband energy absorber and dissipater of shock energy from the rod. It is shown that strong targeted energy transfer from the rod to the attachment occurs when there is strong stiffness asymmetry in the attachment. For weak viscous dissipation, a clear understanding of dynamical transitions in the integrated rod-non-linear attachment system can be gained by wavelet transforming the time series and superimposing the resulting wavelet spectra in the frequency-energy plot (FEP) of the periodic orbits of the underlying Hamiltonian system. Two distinct NES configurations are analyzed in detail, and their damped responses are analyzed by the Hilbert-Huang transform (HHT). We show that the HHT is capable of analyzing even complex non-linear damped transitions, by providing the dominant frequency components (or equivalently, time scales) at which the non-linear phenomena take place, and clarifying the series of non-linear resonance captures between the rod and attachment dynamics that are responsible for the broadband energy exchanges in this system.
Keywords:Broadband energy exchanges  Non-linear resonance  Dissipative flexible systems
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号