首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Perpendicular magnetic anisotropy of ultrathin FeCo alloy films on Pd(0 0 1) surface: First principles study
Authors:Dongyoo Kim
Institution:Department of Physics, Pukyong National University, Busan 608-737, Republic of Korea
Abstract:Using the full potential linearized augmented plane wave (FLAPW) method, thickness dependent magnetic anisotropy of ultrathin FeCo alloy films in the range of 1 monolayer (ML) to 5 ML coverage on Pd(0 0 1) surface has been explored. We have found that the FeCo alloy films have close to half metallic state and well-known surface enhancement in thin film magnetism is observed in Fe atom, whereas the Co has rather stable magnetic moment. However, the largest magnetic moment in Fe and Co is found at 1 ML thickness. Interestingly, it has been observed that the interface magnetic moments of Fe and Co are almost the same as those of surface elements. The similar trend exists in orbital magnetic moment. This indicates that the strong hybridization between interface FeCo alloy and Pd gives rise to the large magnetic moment. Theoretically calculated magnetic anisotropy shows that the 1 ML FeCo alloy has in-plane magnetization, but the spin reorientation transition (SRT) from in-plane to perpendicular magnetization is observed above 2 ML thickness with huge magnetic anisotropy energy. The maximum magnetic anisotropy energy for perpendicular magnetization is as large as 0.3 meV/atom at 3 ML film thickness with saturation magnetization of View the MathML source. Besides, the calculated X-ray magnetic circular dichroism (XMCD) has been presented.
Keywords:75  30  Gw  75  75  Rf  75  30  &minus  m
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号