首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Cationic methacrylate copolymers containing primary and tertiary amino side groups: Controlled synthesis via RAFT polymerization,DNA condensation,and in vitro gene transfection
Authors:Caihong Zhu  Sooyeon Jung  Guoying Si  Ru Cheng  Fenghua Meng  Xiulin Zhu  Tae Gwan Park  Zhiyuan Zhong
Institution:1. Biomedical Polymers Laboratory, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China;2. Department of Biological Sciences, Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon 305‐701, South Korea
Abstract:A versatile family of cationic methacrylate copolymers containing varying amounts of primary and tertiary amino side groups were synthesized and investigated for in vitro gene transfection. Two different types of methacrylate copolymers, poly(2‐(dimethylamino)ethyl methacrylate)/aminoethyl methacrylate P(DMAEMA/AEMA)] and poly(2‐(dimethylamino)ethyl methacrylate)/aminohexyl methacrylate P(DMAEMA/AHMA)], were obtained by reversible addition‐fragmentation chain transfer (RAFT) copolymerization of dimethylaminoethyl methacrylate (DMAEMA) with N‐(tert‐butoxycarbonyl)aminoethyl methacrylate (Boc‐AEMA) or N‐(tert‐butoxycarbonyl)aminohexyl methacrylate (Boc‐AHMA) followed by acid deprotection. Gel permeation chromatography (GPC) measurements revealed that Boc‐protected methacrylate copolymers had Mn in the range of 16.1–23.0 kDa and low polydispersities of 1.12–1.26. The copolymer compositions were well controlled by monomer feed ratios. Dynamic light scattering and agarose gel electrophoresis measurements demonstrated that these PDMAEMA copolymers had better DNA condensation than PDMAEMA homopolymer. The polyplexes of these copolymers revealed low cytotoxicity at an N/P ratio of 3/1. The in vitro transfection in COS‐7 cells in serum free medium demonstrated significantly enhanced (up to 24‐fold) transfection efficiencies of PDMAEMA copolymer polyplexes as compared with PDMAEMA control. In the presence of 10% serum, P(DMAEMA/AEMA) and P(DMAEMA/AHMA) displayed a high transfection activity comparable with or better than 25 kDa PEI. These results suggest that cationic methacrylate copolymers are highly promising for development of safe and efficient nonviral gene transfer agents. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2869–2877, 2010
Keywords:biological applications of polymers  copolymers  DNA polyplexes  gene delivery  living radical polymerization  nanoparticles  PDMAEMA  RAFT polymerization
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号