首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Proton transfer dynamics of the reaction H3O(+)(NH3,H2O)NH4+ studied using the crossed molecular beam technique
Authors:Li Yue  Farrar James M
Institution:Department of Chemistry, University of Rochester, Rochester, New York 14627, USA.
Abstract:The proton transfer reaction of H3O+ and NH3 was studied using the crossed molecular beam technique at relative energies of 0.41, 0.81, and 1.27 eV. At all three energies, the center-of-mass flux distribution of the product ion NH4+ exhibits sharply asymmetry, and the maximum is close to the velocity and direction of the precursor ammonia beam. The reaction transforms almost all of the 1.69 eV exothermicity into internal excitation of the products at all three collision energies. At the lowest collision energy of 0.41 eV, nearly 77% of the total energy appears in NH4+ internal excitation. However, almost 100% of the incremental translational energy in the two higher-energy experiments appears in the product translational energy. Such an observation provides a classic example of the "induced repulsive energy release" mechanism that is expected to be operative on the highly skewed potential energy surfaces characteristic of the heavy+light-heavy mass combination. These results indicate that the proton transfer proceeds through a direct reaction mechanism; a Rice-Ramsperger-Kassel-Marcus theory calculation shows that the lifetime of the intermediate complex NH3-H-H2O]+ is about 100 fs. Proton transfer occurs early on the reaction coordinate, when the incipient N-H bond is extended, and results in highly vibrationally excited NH4+ products, with excitation primarily in N-H stretching modes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号