Abstract: | The interaction of polyvinylpyrrolidone with methyl orange, ethyl orange, propyl orange, and butyl orange has been studied by an equilibrium dialysis method at 5, 15, 25, and 35°C. The first binding constants and the thermodynamic parameters in the course of the binding have been calculated. It was found that the free energy and the enthalpy changes are all negative and the entropy change is largely positive. The longer the alkyl chain of the dyes, the more positive is the enthalpy change (though it is always in the negative direction) and hence the larger is the entropy change. The favorable free energy of the binding of butyl orange observed for the formation of the dye–polymer complex seems to be a result of a favorable entropy change rather than any favorable enthalpy change. Temperature dependences of the thermodynamic functions were apparently observed. That is, ΔF and ΔH become larger in absolute magnitude as the temperature increases. The positive quantity of ΔS tends to decrease with increasing temperture. All these facts obtained can be interpreted satisfactorily by the hydrophobic interaction between hydrocarbon portions of the dyes and nonpolar parts of the macromolecule. |