首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Selective synthesis of clinoatacamite Cu2(OH)3Cl and tenorite CuO nanoparticles by pH control
Authors:Engelbrekt  Christian  Malcho  Phillip  Andersen  Jonas  Zhang  Lijuan  Ståhl  Kenny  Li  Bin  Hu  Jun  Zhang  Jingdong
Institution:1. School of Material Science and Engineering, University of Jinan, Jinan, 250022, People’s Republic of China
2. Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan
3. School of Materials Science and Engineering, Qilu University of Technology, Jinan, 250353, Shandong, People’s Republic of China
Abstract:To investigate the shell deposited kinetics, CdSe quantum dots (QDs) and nanorods (NRs) with a maximum length of 17 nm were fabricated via organic synthesis routes. CdSe with a hexagonal crystal structure (wurtzite) favors epitaxial growth on the {002} surfaces when well-controlled conditions were used. The morphologies and sizes of CdSe samples depended strongly on chemicals and temperature. In the case of 320 °C, CdSe NRs with adjusted length of 7–17 nm were obtained from trioctylphosphine oxide (TOPO) and tetradecylphosphonic acid (TDPA). In contrast, short CdSe NRs (less than 10 nm) were created from octadecylphosphonic acid (ODPA) and trioctylamine (TOA). Spherical CdSe QDs were further fabricated using stearic acid (SA) and TOPO at 300 °C. CdSe cores were coated with Cd0.5Zn0.5S and CdTe shells. Anisotropic growth occurred during shell deposition because CdS shells grown preferentially on the {001} facet of the CdSe core. In the case of CdSe core prepared from TOPO and TDPA, CdSe/Cd0.5Zn0.5S core/shell samples prepared from long CdSe NRs (more than 10 nm) revealed a peanut morphology while the core/shell samples created from short ones (less than 10 nm) exhibited a spherical morphology. All of the CdSe/Cd0.5Zn0.5S core/shell samples revealed a similar length to that of the CdSe cores. This phenomenon was also observed for the core/shell samples fabricated using CdSe NRs prepared by ODPA and TOA. This is ascribed to the well-developed crystal structure of CdSe NRs fabricated using an organic synthesis at high temperature. In contrast, this anisotropic growth did not occur when spherical CdSe QDs prepared from SA and TOPO and the shell (Cd0.5Zn0.5S) coating carried out using SA and TOA. To indicate the shell depositing process, CdSe NRs fabricated using TDPA and TOPO were coated with a CdTe shell. CdTe monomers were deposited on the middle and tip parts of the CdSe NRs to form a tetrapod-like morphology at 220 °C. This is ascribed to the large difference of structure of CdSe (hexagonal) and CdTe (zinc blende).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号