首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Upper Bounds for Coarsening for the Deep Quench Obstacle Problem
Authors:Amy Novick-Cohen
Institution:1.Department of Mathematics,Technion-IIT,Haifa,Israel
Abstract:The deep quench obstacle problem models phase separation at low temperatures. During phase separation, domains of high and low concentration are formed, then coarsen or grow in average size. Of interest is the time dependence of the dominant length scales of the system. Relying on recent results by Novick-Cohen and Shishkov (Discrete Contin. Dyn. Syst. B 25:251–272, 2009), we demonstrate upper bounds for coarsening for the deep quench obstacle problem, with either constant or degenerate mobility. For the case of constant mobility, we obtain upper bounds of the form t 1/3 at early times as well as at times t for which E(t) £ \frac(1-`(u)]2)4E(t)\le\frac{(1-\overline{u}^{2})}{4}, where E(t) denotes the free energy. For the case of degenerate mobility, we get upper bounds of the form t 1/3 or t 1/4 at early times, depending on the value of E(0), as well as bounds of the form t 1/4 whenever E(t) £ \frac(1-`(u)]2)4E(t)\le\frac{(1-\overline{u}^{2})}{4}.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号