首页 | 本学科首页   官方微博 | 高级检索  
     


Performance modeling and analysis of blood flow in elastic arteries
Authors:Anil Kumar  C. L. Varshney  G. C. Sharma
Affiliation:Department of Post-Graduate Studies and Research in Mathematics & Computer Science, S.Varshney College, Aligarh-202001, India;;Institute of Basic Science, Khandari, Agra-282002, India
Abstract:
Two different non_Newtonian models for blood flow are considered,first a simple power law model displaying shear thinning viscosity,and second a generalized Maxwell model displaying both shear thinning viscosity and oscillating flow viscous_elasticity.These models are used along with a Newtonian model to study sinusoidal flow of blood in rigid and elastic straight arteries in the presence of magnetic field.The elasticity of blood does not appear to influence its flow behavior under physiological conditions in the large arteries,purely viscous shear thinning model should be quite realistic for simulating blood flow under these conditions.On using the power law model with high shear rate for sinusoidal flow simulation in elastic arteries,the mean and amplitude of the flow rate were found to be lower for a power law fluid compared to Newtonian fluid for the same pressure gradient.The governing equations have been solved by Crank_Niclson scheme.The results are interpreted in the context of blood in the elastic arteries keeping the magnetic effects in view.For physiological flow simulation in the aorta,an increase in mean wall shear stress,but a reduction in peak wall shear stress were observed for power law model compared to a Newtonian fluid model for matched flow rate wave form.Blood flow in the presence of transverse magnetic field in an elastic artery is investigated and the influence of factors such as morphology and surface irregularity is evaluated.
Keywords:elastic artery model  Crank-Niclson scheme  non-Newtonian fluid  wall shear stress
本文献已被 维普 万方数据 SpringerLink 等数据库收录!
点击此处可从《应用数学和力学(英文版)》浏览原始摘要信息
点击此处可从《应用数学和力学(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号