首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Metal speciation measurement by diffusive gradients in thin films technique with different binding phases
Authors:Weijia Li  Huijun Zhao  Richard John
Institution:a Environmental Science Program and Department of Chemistry, University of Manitoba, Winnipeg, Man., Canada R3T 2N2
b School of Environmental and Applied Sciences, Gold Coast Campus, Griffith University, PMB 50, Gold Coast Mail Centre, Qld 9726, Australia
Abstract:Since its invention in the mid-1990s, the diffusive gradients in thin films (DGT) technique has rapidly become one of the most promising in situ sampling techniques for trace metal measurement in natural waters. We investigated here the possibility of using DGT devices with different binding phases to determine different DGT labile fractions of Cd and Cu in laboratory solutions and in natural waters. Several binding phases were studied, including conventional Chelex 100 resin imbedded polyacrylamide hydrogel (Chelex) and several recently developed binding phases, poly(acrylamide-co-acrylic acid) (PAM-PAA) gel, poly(acrylamidoglycolic acid-co-acrylamide) (PAAG-PAM) gel, Whatman P81 cellulose phosphate ion-exchange membrane (P81), and poly(4-styrenesulfonate) (PSS) aqueous solution. Laboratory testing in metal solutions spiked with EDTA or humic acid suggested that all the DGT devices measured only free metal ions and inorganic metal complexes. Upon field testing at both freshwater and seawater sites it was found that the DGT labile metal concentrations measured by different binding phases can be significantly different, suggesting that the DGT labile metal fractions were dependent on binding strength of the binding phase. By designing binding phases that can compete with different natural water complexing ligands to varying extents, it is possible to use these different DGT devices to measure metal speciation in natural waters.
Keywords:In situ analysis  DGT  Metal speciation  Complexation  Waters
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号