首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Free vibration of an elastic bottom plate of a partially fluid-filled cylindrical container with an internal body
Authors:E Askari  F Daneshmand  
Institution:aMechanical Engineering Department, School of Engineering, Shiraz University, Shiraz 71348-51154, Iran
Abstract:An analytical method is developed to consider the free vibration of an elastic bottom plate of a partially fluid-filled cylindrical rigid container with an internal body. The internal body is a rigid cylindrical block that is concentrically and partially submerged inside the container. The developed method captured the analytical features of the velocity potential in a non-convex, continuous, and simply connected fluid domain including the interaction between the fluid and the structure. The interaction between the fluid and the bottom plate is included. The Galerkin method is used for matching the velocity potentials appropriate to two distinct fluid regions across the common horizontal boundary (artificial horizontal boundary). Then, the Rayleigh–Ritz method is also used to calculate the natural frequencies and modes of the bottom plate of the container. The results obtained for the problem without internal body are in close agreement with both experimental and numerical results available in the articles. A finite element analysis is also used to check the validity of the present method in the presence of the internal body. Furthermore, the influences of various variables such as fluid level, internal body radius, internal body length, and the number of nodal diameters and circles on the dynamic behaviour of the coupled system are investigated.
Keywords:Free vibration  Fluid–  structure interaction  Internal body  Rayleigh–  Ritz method  Eigen function expansions  Galerkin method
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号