首页 | 本学科首页   官方微博 | 高级检索  
     


Field-enhanced electronic specific heat of carbon nanotubes
Affiliation:1. Department of Mathematics, Comsats Institute of Information Technology, Islamabad 44000, Pakistan;2. Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan;3. Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;1. School of Astronautics, Harbin Institute of Technology, PO Box 137, Harbin 150001, PR China;2. College of Mechanical Engineering, Beijing University of Technology, Beijing 100124, PR China;1. Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz, Iran;2. Young Researchers Club, Shahre Kord Branch, Islamic Azad University, Shahre Kord, Iran
Abstract:The tight-binding model including curvature effects is used to study the effect of transverse electric field on the low-temperature electronic specific heat (Cv) for armchair and zigzag carbon nanotubes (ACNTs and ZCNTs). Electric field could effectively modulate energy dispersions of CNTs and cause a shift of electronic states toward the Fermi energy. As field strength reaches to a critical value (Fc), it induces special structures in the density of states near the Fermi energy and thus the giant specific heat. At Fcs, Cv has a value comparable to that of the phonon specific heat and reveals strongly non-linear dependence on temperature. The critical field strength and giant specific heat are closely related to nanotube's geometry. Moreover, under Fcs, the extra longitudinal magnetic flux could cause a re-enhancement in Cv for ZCNTs, whereas Cv is always diminished for ACNTs.
Keywords:Electronic specific heat  Tight-binding model  Electric field  Magnetic field  Carbon nanotube
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号