首页 | 本学科首页   官方微博 | 高级检索  
     


Macrodefect-Free Materials: Modification of Interfaces in Cement Composites by Polymer Grafting
Authors:Milan Drabik  Robert C.T. Slade
Affiliation:(1) Institute of Inorganic Chemistry SASci, SK-845 36, Bratislava, Slovak Republic
Abstract:
MDF materials are chemically bonded ceramic materials free of the macrodefects typical of hydraulic cement-based materials. MDF materials arising through reactions of sulfo-aluminate-ferrite belitic (SAFB) clinkers and/or Portland cements (PC) with two types of water-soluble polymer (hydroxy-propylmethyl cellulose {HPMC}, polyphosphate glass {poly-P}) are discussed. Mixes of low energy SAFB clinkers with Portland cement, HPMC and, especially poly-P comprise promising cross-linked compositions additional to the better known MDF materials formed from high alumina cement with polyvinylalcohol/acetate. The principles of co-ordination of P and C atoms (of the polymer) with Al and Fe atoms (originating from the cement) are highlighted from spectroscopic information on next-nearest-neighbour interactions, along with the effects of second co-ordination spheres. Polymers modify the interface through functional bonding/grafting of polymer chains onto the surfaces of cement grains. Both the cross-linked atomic structure and the interface coincide well with the model of functional polymers and represent a new type of atomic-level structure in polymer-modified cements. Interpretation is based on previous magnetic resonance and thermal analysis studies. The compactness of Al(Fe)-O-P cross-links reduces transport through the interfaces, increasing the interfacial interactions and resisting the unfavourable uptake of moisture and carbonation.
Keywords:macro-defect-free material  cross-links  atomic-level vs. particle interface
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号