首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Incorporating the effects of fabric in the dilatant double shearing model for planar deformation of granular materials
Institution:1. Glasgow Computational Engineering Centre, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, United Kingdom;2. Centre for Research in Computational and Applied Mechanics, University of Cape Town, 7701 Rondebosch, South Africa;3. Chair of Applied Mechanics, Department of Mechanical Engineering, University of Erlangen-Nürnberg, Egerlandstr. 5, 91058 Erlangen, Germany
Abstract:The objective of this paper is to incorporate the effects of fabric and its evolution into the Dilatant Double Shearing Model Mehrabadi, M.M., Cowin, S.C., 1978. Initial planar deformation of dilatant granular materials. J. Mech. Phys. Solids 26, 269–284] for granular materials in order to capture the anisotropic behavior and the complex response of granular materials in cyclic shear loading. An important consequence of considering the fabric is that one can have unequal shearing rates along the two slip directions. This property leads to the non-coaxiality of the principal axes of stress and strain rate, which is more appropriate for a material that exhibits initial and induced anisotropy. In addition, we employ a fabric-dependent elasticity tensor with orthotropic symmetry. The model developed in this paper also predicts one of the experimentally observed characteristics of granular materials: the gradual concentration of the contact normals towards the maximum principal stress direction.We implement the constitutive equations into ABAQUS/Explicit by writing a user material subroutine in order to predict the strength anisotropy of granular materials in a plane strain biaxial compression test and investigate the mechanical behavior of granular materials under the cyclic shear loading conditions. The predictions from this model show good quantitative agreement with the experiments of Park, C.S., 1990. Anisotropy in deformation and strength properties of sands in plane strain compression, Masters Thesis, University of Tokyo; Park, C.S., Tatsuoka, F., 1994. Anisotropic strength and deformation of sands in plane strain compression. In: XIII ICSMFE, New Delhi, India; Okada, N., 1992. Energy dissipation in inelastic flow of cohesionless granular media. Ph.D. Thesis, University of California, San Diego].
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号