首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Influence of Drug Load on the Printability and Solid-State Properties of 3D-Printed Naproxen-Based Amorphous Solid Dispersion
Authors:Eric Ofosu Kissi  Robin Nilsson  Liebert Parreiras Nogueira  Anette Larsson  Ingunn Tho
Institution:1.Department of Pharmacy, University of Oslo, P.O. Box, 1068 Blindern, 0316 Oslo, Norway;2.Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivagen 10, 41296 Gothenburg, Sweden; (R.N.); (A.L.);3.Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, P.O. Box, 1109 Blindern, 0317 Oslo, Norway;
Abstract:Fused deposition modelling-based 3D printing of pharmaceutical products is facing challenges like brittleness and printability of the drug-loaded hot-melt extruded filament feedstock and stabilization of the solid-state form of the drug in the final product. The aim of this study was to investigate the influence of the drug load on printability and physical stability. The poor glass former naproxen (NAP) was hot-melt extruded with Kollidon® VA 64 at 10–30% w/w drug load. The extrudates (filaments) were characterised using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and thermogravimetric analysis (TGA). It was confirmed that an amorphous solid dispersion was formed. A temperature profile was developed based on the results from TGA, DSC, and DMA and temperatures used for 3D printing were selected from the profile. The 3D-printed tablets were characterised using DSC, X-ray computer microtomography (XµCT), and X-ray powder diffraction (XRPD). From the DSC and XRPD analysis, it was found that the drug in the 3D-printed tablets (20 and 30% NAP) was amorphous and remained amorphous after 23 weeks of storage (room temperature (RT), 37% relative humidity (RH)). This shows that adjusting the drug ratio can modulate the brittleness and improve printability without compromising the physical stability of the amorphous solid dispersion.
Keywords:3D printing  additive manufacturing  fused deposition modelling  hot-melt extrusion  X-ray computed microtomography  glass solution
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号