首页 | 本学科首页   官方微博 | 高级检索  
     检索      


High Compression‐Induced Conductivity in a Layered Cu–Br Perovskite
Authors:Adam Jaffe  Stephanie A Mack  Yu Lin  Wendy L Mao  Jeffrey B Neaton  Hemamala I Karunadasa
Abstract:We show that the onset pressure for appreciable conductivity in layered copper‐halide perovskites can decrease by ca. 50 GPa upon replacement of Cl with Br. Layered Cu–Cl perovskites require pressures >50 GPa to show a conductivity of 10?4 S cm?1, whereas here a Cu–Br congener, (EA)2CuBr4 (EA=ethylammonium), exhibits conductivity as high as 2×10?3 S cm?1 at only 2.6 GPa, and 0.17 S cm?1 at 59 GPa. Substitution of higher‐energy Br 4p for Cl 3p orbitals lowers the charge‐transfer band gap of the perovskite by 0.9 eV. This 1.7 eV band gap decreases to 0.3 eV at 65 GPa. High‐pressure X‐ray diffraction, optical absorption, and transport measurements, and density functional theory calculations allow us to track compression‐induced structural and electronic changes. The notable enhancement of the Br perovskite's electronic response to pressure may be attributed to more diffuse Br valence orbitals relative to Cl orbitals. This work brings the compression‐induced conductivity of Cu‐halide perovskites to more technologically accessible pressures.
Keywords:conducting materials  high-pressure chemistry  Jahn–  Teller distortion  layered copper halide perovskite  semiconductors
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号