首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Methyl transfer from CH(3)Co(III)Pc to thiophenoxides revisited: remote substituent effect on the rates
Authors:Galezowski Wlodzimierz
Institution:Department of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznan, Poland. wlodgal@amu.edu.pl
Abstract:A two-step mechanism of the reaction of CH(3)Co(III)Pc (Pc = dianion of phthalocyanine) with thiophenoxides in DMA has been confirmed, and the visible spectrum of the inactive transient, CH(3)Co(III)Pc(SAr)(-), has been determined. Rapid rates for ligation of CH(3)Co(III)Pc, yielding CH(3)Co(III)Pc(S-C(6)H(4)-X)(-), are virtually independent of X; this step proceeds probably by an I(d) mechanism. Kinetic data for the follow-up methyl-transfer step yield second-order rate constants and stability constants for CH(3)Co(III)Pc(S-C(6)H(4)-X)(-) consistent with those estimated from concentration dependence of the amplitude of the ligand-exchange step. Cyclic voltammetry provides first reduction potential for CH(3)Co(III)Pc(DMA) of -1.42 V vs Fc(+)/Fc, which makes an OSET mechanism unlikely. Homolytic decay of CH(3)Co(III)Pc(SAr)(-) has also been ruled out. All of the kinetic data, including Hammett's rho = -2.3 +/- 0.1, N-donor inhibition, and alkyl group effect, Me > Et, indicate that the reaction is a normal S(N)2 methyl transfer, only very fast. Methyl transfer to aliphatic thiolates is also rapid and follows the same S(N)2 mechanism. Exceptional methyl-transfer reactivity of the phthalocyanine model sharply contrasting with the inertness of methylcobaloxime is explained.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号