首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electronic effect of different positions of the -NO2 group on the DNA-intercalator of chiral complexes [Ru(bpy)2L]2+ (L =o-npip, m-npip and p-npip)
Authors:Shi Shuo  Liu Jie  Li Jun  Zheng Kang C  Tan Cai P  Chen Lan M  Ji Liang N
Institution:School of Chemistry and Chemical Engineering/Key Laboratory of Gene Engineering of Ministry of Education/State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, China.
Abstract:New chiral Ru(II) complexes with intercalators L (L =o-npip, m-npip and p-npip) containing -NO2 at different positions on the phenyl ring were synthesized and characterized by elemental analysis, 1H NMR, ESI-MS and CD spectra. The DNA binding properties of these complexes have been investigated with UV-Vis, emission spectra, CD spectra and viscosity measurements. A subtle but detectable difference was observed in the interaction of these isomers with CT-DNA. Absorption spectroscopy experiments indicated that each of these complexes can interact with the DNA. The DNA-binding of the Delta-isomer is stronger than that of Lambda-isomer. DNA-viscosity experiments provided evidence that both Delta- and Lambda-Ru(bpy)2(o-npip)](PF6)2 bind to DNA with partial intercalation, and both Delta- and Lambda-Ru(bpy)(2)(p-npip)](PF6)2 fully intercalate with DNA. However, Delta- and Lambda- Ru(bpy)2(m-npip)](PF6)2 bind to DNA through different modes, i.e., the Delta isomer by intercalation and Lambda isomer by partial intercalation. Under irradiation with UV light, Ru(II) complexes showed different efficiency of cleaving DNA. The most interesting feature is that neither 1 (Delta-1 and Lambda-1) nor 3 (Delta-3 and Lambda-3) emit luminescence either alone in aqueous solution or in the presence of DNA, whereas both Delta-2 and Lambda-2 emit luminescence under the same conditions. In addition, theoretical calculations for these three isomer complexes have been carried out applying the density functional theory (DFT) method at the level of the B3LYP/LanL2DZ basis set, and the calculated results can reasonably explain the obtained experimental trends in the DNA-binding affinities or binding constants (Kb) and some spectral properties of the complexes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号