Abstract: | Two crystal modifications, I and II, of the ZnPhen(S2CNEt2)2 complex have been isolated. According to XRD data, the single crystals of I are triclinic with a=9.745(2), b=10.252(2), c=14.331(3) Å, α=99.18(2), β=91.01(2), γ=113.28(2)°, V=1293.2(4) Å3, space group P1, Z=2, dcalc=1.401 g/cm3. The crystals of II are monoclinic with a=7.220(6), b=18.095(2), c=19.050(4) Å, β=95.85(2)°, V=2475.8(7) Å3, space group C2/c, Z=4, dcalc=1.461 g/cm3. In both modifications, the structure is formed by monomer molecules with a distorted octahedral environment of the zinc atom. All atoms in I are in the general position; in II, the atoms are linked by the twofold rotation axis. It is shown by X-ray phase analysis (XRPA) that the MnPhen(S2CNEt2)2 complexes (III) are isostructural to modification I of the ZnPhen(S2CNEt2)2 complex, which underlies the synthesis of a solid solution of these complexes, MnZn2Phen3(S2CNEt2)6 (phase IV). It is found that MPhen(S2CNEt2)2 (M=Zn2+, Mn2+) and phase IV quantitatively sublime when heated in vacuum. Thermolysis of III in argon yields manganese(II) sulfide of cubic modification; the main product of thermolysis of phase IV is a solid solution of ZnxMn1?xS of hexagonal modification. |