首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nonlocal Mechanism for Synchronization of Time Delay Networks
Authors:Ido Kanter  Evi Kopelowitz  Roni Vardi  Meital Zigzag  Dana Cohen  Wolfgang Kinzel
Institution:1.Department of Physics,Bar-Ilan University,Ramat-Gan,Israel;2.Gonda Interdisciplinary Brain Research Center, and the Goodman Faculty of Life Sciences,Bar-Ilan University,Ramat-Gan,Israel;3.Institute for Theoretical Physics,University of Wuerzburg, Am Hubland,Wuerzburg,Germany
Abstract:We present the interplay between synchronization of networks with heterogeneous delays and the greatest common divisor (GCD) of loops composing the network. We distinguish between two types of networks; (I) chaotic networks and (II) population dynamic networks with periodic activity driven by external stimuli. For type (I), in the weak chaos region, the units of a chaotic network characterized by GCD=1 are in a chaotic zero-lag synchronization, whereas for GCD>1, the network splits into GCD-clusters in which clustered units are in zero-lag synchronization. These results are supported by simulations of chaotic systems, self-consistent and mixing arguments, as well as analytical solutions of Bernoulli maps. Type (II) is exemplified by simulations of Hodgkin Huxley population dynamic networks with unidirectional connectivity, synaptic noise and distribution of delays within neurons belonging to a node and between connecting nodes. For a stimulus to one node, the network splits into GCD-clusters in which cluster neurons are in zero-lag synchronization. For complex external stimuli, the network splits into clusters equal to the greatest common divisor of loops composing the network (spatial) and the periodicity of the external stimuli (temporal). The results suggest that neural information processing may take place in the transient to synchronization and imply a much shorter time scale for the inference of a perceptual entity.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号