首页 | 本学科首页   官方微博 | 高级检索  
     


Regioselective silylation of sugars through palladium nanoparticle-catalyzed silane alcoholysis
Authors:Chung Mee-Kyung  Orlova Galina  Goddard John D  Schlaf Marcel  Harris Robert  Beveridge Terrance J  White Gisele  Hallett F Ross
Affiliation:Guelph-Waterloo Centre for Graduate Work in Chemistry (GWC(2)), Department of Chemistry and Biochemistry, Guelph, Ontario, Canada, N1G 2W1.
Abstract:
Palladium(0)-catalyzed silane alcoholysis was applied to sugars for the first time using tert-butyldimethylsilane (TBDMS-H) and Ph(3)SiH as the silanes. The catalyst is a colloidal solution of Pd(0) generated in situ from PdX(2) (X = Cl(-), OAc(-)) and TBDMS-H in N,N-dimethylacetamide. The colloid has been characterized by dynamic light scattering and transmission electron microscopy and consists of catalytically highly active nanoparticles of approximately 2 nm diameter. The silane alcoholysis reaction is an effective method for the regioselective silylation of methyl and phenyl glycosides and generates hydrogen gas as the only side product. For many of the sugar substrates investigated, the distribution of regioisomers obtained is complementary to that of the traditional R(3)SiCl/base (base = pyridine, imidazole) methodology and gives convenient access to the 3,6- rather than the 2,6-silylated pyranosides, obtained as the main product by the silyl chloride method. The method also allows a selective axial silylation of levoglucosan and 1,3,5-O-methylidene-myo-inositol. In an attempt to rationalize the observed regioselectivities, ab initio predictions (HF/3-21G) have been made on the relative energies of some of the silylated products. They suggest that the observed regioselectivities do not reflect a kinetic vs thermodynamic product distribution but are induced by the silylation agent employed. Models for the possible origin of the observed regioselectivity in both silylation methods (silane- and silyl chloride-based) are discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号