首页 | 本学科首页   官方微博 | 高级检索  
     


The Solution of Two-Dimensional Oseen Flow Problems Using Integral Conditions
Authors:DENNIS, S. C. R.   KOCABIYIK, S.
Affiliation:Department of Applied Mathematics, University of Western Ontario London, Ontario, Canada N6A 5B9
Abstract:A general method of solving Oseen's linearized equations fortwo-dimensional steady flow of a viscous incompressible fluidpast a cylinder in an unbounded field is developed. The analysisis developed in terms of the scalar vorticity and stream functionand it is shown that the vorticity for Oseen flow problems canbe obtained separately from the stream function. The determinationof the vorticity can be effected using conditions of an integralcharacter deduced from the no-slip condition at the cylindersurface together with the conditions at large distances. Theindependent determination of the vorticity seems to be a newstep in Oseen theory. The method enables one to obtain manyproperties of the flow in terms ofthe Reynolds number by usingonly the vorticity without the necessity of finding the streamfunction. The use of integral conditions makes the detailedcalculations straightforward, systematic, and elementary. Themethod is tested by applying it to the case of uniform flowpast an elliptic cylinder at an arbitrary angle of incidenceand also to cases of symmetrical and asymmetrical flows pastcircular cylinders. The leading approximation for small Reynoldsnumber is obtained where possible. In the case of flow pasta rotating cylinder, the only possible solution is the Oseensolution for the nonrotating case with the addition of a potentialvortex.
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号