首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hydroaromatic equilibration during biosynthesis of shikimic acid
Authors:Knop D R  Draths K M  Chandran S S  Barker J L  von Daeniken R  Weber W  Frost J W
Institution:The Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, USA.
Abstract:The expense and limited availability of shikimic acid isolated from plants has impeded utilization of this hydroaromatic as a synthetic starting material. Although recombinant Escherichia coli catalysts have been constructed that synthesize shikimic acid from glucose, the yield, titer, and purity of shikimic acid are reduced by the sizable concentrations of quinic acid and 3-dehydroshikimic acid that are formed as byproducts. The 28.0 g/L of shikimic acid synthesized in 14% yield by E. coli SP1.1/pKD12.138 in 48 h as a 1.6:1.0:0.65 (mol/mol/mol) shikimate/quinate/dehydroshikimate mixture is typical of synthesized product mixtures. Quinic acid formation results from the reduction of 3-dehydroquinic acid catalyzed by aroE-encoded shikimate dehydrogenase. Is quinic acid derived from reduction of 3-dehydroquinic acid prior to synthesis of shikimic acid? Alternatively, does quinic acid result from a microbe-catalyzed equilibration involving transport of initially synthesized shikimic acid back into the cytoplasm and operation of the common pathway of aromatic amino acid biosynthesis in the reverse of its normal biosynthetic direction? E. coli SP1.1/pSC5.214A, a construct incapable of de novo synthesis of shikimic acid, catalyzed the conversion of shikimic acid added to its culture medium into a 1.1:1.0:0.70 molar ratio of shikimate/quinate/dehydroshikimate within 36 h. Further mechanistic insights were afforded by elaborating the relationship between transport of shikimic acid and formation of quinic acid. These experiments indicate that formation of quinic acid during biosynthesis of shikimic acid results from a microbe-catalyzed equilibration of initially synthesized shikimic acid. By apparently repressing shikimate transport, the aforementioned E. coli SP1.1/pKD12.138 synthesized 52 g/L of shikimic acid in 18% yield from glucose as a 14:1.0:3.0 shikimate/quinate/dehydroshikimate mixture.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号