首页 | 本学科首页   官方微博 | 高级检索  
     

自动波竞争神经网络及其在单源最短路问题中的应用
引用本文:董继扬,张军英,陈忠. 自动波竞争神经网络及其在单源最短路问题中的应用[J]. 物理学报, 2007, 56(9): 5013-5020
作者姓名:董继扬  张军英  陈忠
作者单位:(1)西安电子科技大学雷达信号处理国家重点实验室,西安 710071; (2)厦门大学物理系,福建省半导体照明工程技术研究中心,厦门 361005; (3)厦门大学物理系,福建省半导体照明工程技术研究中心,厦门 361005;西安电子科技大学雷达信号处理国家重点实验室,西安 710071
基金项目:国家自然科学基金;国家高技术研究发展计划(863计划)
摘    要:
将竞争机理引入网络的自动波产生与传播过程中,提出自动波竞争神经网络(ACNN)模型,并成功地应用于求解单源最短路问题,给出了基于ACNN的最短路求解算法. 与其他神经网络最短路算法相比,基于ACNN的最短路算法具有网络所需的神经元数目少、神经元及网络的结构简单、易于软硬件的实现、以及全并行方式计算等特点,可用于求解非对称赋权图的最短路径树问题,且其计算时间(迭代次数)仅正比于最短路径上的跃点数,与赋权图的复杂度、路径总长、边长的精度、通路总数等因素无关. 计算机仿真结果表明该算法的有效性和快速求解能力. 关键词:单源最短路问题自动波竞争神经网络脉冲耦合神经网络

关 键 词:单源最短路问题  自动波竞争神经网络  脉冲耦合神经网络
文章编号:1000-3290/2007/56(09)/5013-08
收稿时间:2006-11-27
修稿时间:2006-11-27

Autowave-competition neural network and its application to the single-source shortest-paths problem
Dong Ji-Yang,Zhang Jun-Ying,Chen Zhong. Autowave-competition neural network and its application to the single-source shortest-paths problem[J]. Acta Physica Sinica, 2007, 56(9): 5013-5020
Authors:Dong Ji-Yang  Zhang Jun-Ying  Chen Zhong
Abstract:
In this paper, the competitive mechanism is introduced to the production and propagation processes of the autowave of neural network. The autowave-competition neural network (ACNN) is proposed to successfully resolve the problem of single-source shortest paths (SSSP). The algorithm for shortest paths based on ACNN is presented. Compared with other neural network based approaches, the new algorithm has the following advantages: less number of neurons needed, simple structure of neurons and networks, readily available software and hardware. When ACNN is employed to resolve the shortest path problem, the computational complexity is only related to the hop number of the shortest path, but independent of the complexity of path graph, the number of the existing paths in the graph and the precision of the length of edges. Simulations show that the proposed algorithm is plausible and effictive.
Keywords:single-source shortest path   autowave-competition neural network   pulse-coupled neural network
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号