首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Rapid DNA electrochemical biosensing platform for label-free potentiometric detection of DNA hybridization
Authors:Meng Du
Institution:Key Laboratory of Eco-chemical Engineering (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
Abstract:This paper described a novel electrochemical DNA biosensor for rapid specific detection of nucleic acids based on the sulfonated polyaniline (SPAN) nanofibre and cysteamine-capped gold nanoparticle (CA-GNP) layer-by-layer films. A precursor film of 3-mercaptopropionic acid (MPA) was firstly self-assembled on the Au electrode surface. CA-GNP was covalently deposited on the Au/MPA electrode to obtain a stable substrate. SPAN nanofibre and CA-GNP were alternately layer-by-layer assembled on the stable substrate by electrostatic force. Cyclic voltammetry was used to monitor the consecutive growth of the multilayer films by utilizing Fe(CN)6]3−/4− as the redox indicator. The (CA-GNP/SPAN)n films showed satisfactory ability of electron transfer and excellent redox activity in neutral media. Negatively charged probe ssDNA was immobilized on the outer layer of the multilayer film (CA-GNP) through electrostatic affinity. Chronopotentiometry and electrochemical impedance spectroscopy were employed to obtain the direct electrochemical readout for probe ssDNA immobilization and hybridization using Fe(CN)6]3−/4− in solution as the mediator. While electrochemical impedance spectroscopy led to the characterization of the electron-transfer resistance at the electrode, chronopotentiometry provided the total resistance at the interfaces of the modified electrodes. A good correlation between the total electrode resistances and the electron-transfer resistances at the conducting supports was found. Chronopotentiometry was suggested as a rapid transduction means (a few seconds). Based on the (CA-GNP/SPAN)n films, the target DNA with 20-base could be detected up to 2.13 × 10−13 mol/L, and the feasibility for the detection of base-mismatched DNA was also demonstrated.
Keywords:Sulfonated polyaniline  Layer-by-layer  DNA hybridization  Chronopotentiometry
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号