首页 | 本学科首页   官方微博 | 高级检索  
     


Density Functional Theory Study of the Point Defects on KDP (100) and (101) Surfaces
Authors:Xiaoji Zhao  Yanlu Li  Xian Zhao
Affiliation:1.State Key Lab of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, China;2.Center for Optics Research and Engineering of Shandong University, Shandong University, Qingdao 266237, China
Abstract:
Surface defects are usually associated with the formation of other forms of expansion defects in crystals, which have an impact on the crystals’ growth quality and optical properties. Thereby, the structure, stability, and electronic structure of the hydrogen and oxygen vacancy defects (VH and VO) on the (100) and (101) growth surfaces of KDP crystals were studied by using density functional theory. The effects of acidic and alkaline environments on the structure and properties of surface defects were also discussed. It has been found that the considered vacancy defects have different properties on the (100) and (101) surfaces, especially those that have been reported in the bulk KDP crystals. The (100) surface has a strong tolerance for surface VH and VO defects, while the VO defect causes a large lattice relaxation on the (101) surface and introduces a deep defect level in the band gap, which damages the optical properties of KDP crystals. In addition, the results show that the acidic environment is conducive to the repair of the VH defects on the surface and can eliminate the defect states introduced by the surface VO defects, which is conducive to improving the quality of the crystal surface and reducing the defect density. Our study opens up a new way to understand the structure and properties of surface defects in KDP crystals, which are different from the bulk phase, and also provides a theoretical basis for experimentally regulating the surface defects in KDP crystals through an acidic environment.
Keywords:KDP   defect   surface   density functional theory
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号