首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Modelling of Unsteady Transition in Low-Pressure Turbine Blade Flows with Two Dynamic Intermittency Equations
Authors:Koen Lodefier  Erik Dick
Institution:(1) Department of Flow, Heat and Combustion Mechanics, Ghent University – UGent, Ghent, B-9000, Belgium
Abstract:A transition model for describing wake-induced transition is presented based on the SST turbulence model by Menter and two dynamic equations for intermittency: one for near-wall intermittency and one for free-stream intermittency. In the Navier-Stokes equations, the total intermittency factor, which is the sum of the two, multiplies the turbulent viscosity computed by the turbulence model. The quality of the transition model is illustrated on the T106A test cascade for two Reynolds numbers, using experimental results by Stieger and Hodson for transition mainly due to kinematic wake impact on a separation bubble. The quality of the model is also revealed on the T106D test cascade using experimental results from Hilgenfeld, Stadtmuller and Fottner for wake turbulence induced transition. The test cases differ in pitch to chord ratio, Reynolds number and inlet free-stream turbulence intensity, causing different transition mechanisms. The unsteady results are presented in space-time diagrams of shape factor and wall shear stress on the suction side. The results show the capability of the model to capture the physics of unsteady transition in separated state. Inevitable shortcomings are revealed as well.
Keywords:unsteady transition  intermittency  LP turbine  RANS  T106
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号