首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Gold nanoshells on polystyrene cores for control of surface plasmon resonance
Authors:Shi Weili  Sahoo Y  Swihart Mark T  Prasad P N
Institution:Department of Chemical and Biological Engineering and Department of Chemistry and The Institute for Lasers, Photonics, and Biophotonics, University at Buffalo (SUNY), Buffalo, New York 14260, USA.
Abstract:A method is presented for synthesizing core-shell structures consisting of monodisperse polystyrene latex nanospheres as cores and gold nanoparticles as shells. Use of polystyrene spheres as the core in these structures is advantageous because they are readily available commercially in a wide range of sizes, and with dyes or other molecules doped into them. Gold nanoparticles, ranging in size from 1 to 20 nm, are prepared by reduction of a gold precursor with sodium citrate or tetrakis(hydroxymethyl)phosphonium chloride (THPC). Carboxylate-terminated polystyrene spheres are functionalized with 2-aminoethanethiol hydrochloride (AET), which forms a peptide bond with carboxylic acid groups on their surface, resulting in a thiol-terminated surface. Gold nanoparticles then bind to the thiol groups to provide up to about 50% coverage of the surface. These nanoparticles serve as seeds for growth of a continuous gold shell by reduction of additional gold precursor. The shell thickness and roughness can be controlled by the size of the nanoparticle seeds as well as by the process of their growth into a continuous shell. By variation of the relative sizes of the latex core and the thickness of the gold overlayer, the plasmon resonance of the nanoshell can be tuned to specific wavelengths across the visible and infrared range of the electromagnetic spectrum, for applications ranging from the construction of photonic crystals to biophotonics. The position and width of the plasmon resonance extinction peak are well-predicted by extended Mie scattering theory.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号