首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On minimal Sturmian partial words
Authors:F Blanchet-Sadri  John Lensmire
Institution:
  • a Department of Computer Science, University of North Carolina, P.O. Box 26170, Greensboro, NC 27402-6170, USA
  • b Department of Mathematics, UCLA, Box 951555, Los Angeles, CA 90095, USA
  • Abstract:Partial words, which are sequences that may have some undefined positions called holes, can be viewed as sequences over an extended alphabet A?=A∪{?}, where ? stands for a hole and matches (or is compatible with) every letter in A. The subword complexity of a partial word w, denoted by pw(n), is the number of distinct full words (those without holes) over the alphabet that are compatible with factors of length n of w. A function f:NN is (k,h)-feasible if for each integer N≥1, there exists a k-ary partial word w with h holes such that pw(n)=f(n) for all n such that 1≤nN. We show that when dealing with feasibility in the context of finite binary partial words, the only affine functions that need investigation are f(n)=n+1 and f(n)=2n. It turns out that both are (2,h)-feasible for all non-negative integers h. We classify all minimal partial words with h holes of order N with respect to f(n)=n+1, called Sturmian, computing their lengths as well as their numbers, except when h=0 in which case we describe an algorithm that generates all minimal Sturmian full words. We show that up to reversal and complement, any minimal Sturmian partial word with one hole is of the form ai?ajbal, where i,j,l are integers satisfying some restrictions, that all minimal Sturmian partial words with two holes are one-periodic, and that up to complement, ?(aN−1?)h−1 is the only minimal Sturmian partial word with h≥3 holes. Finally, we give upper bounds on the lengths of minimal partial words with respect to f(n)=2n, showing them tight for h=0,1 or 2.
    Keywords:Automata and formal languages  Combinatorics on words  Graph theory  Subword complexity  Feasible functions  Partial words  Sturmian words
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号