首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Rate constants from the reaction path Hamiltonian. II. Nonseparable semiclassical transition state theory
Authors:Peters Baron  Bell Alexis T  Chakraborty Arup
Institution:Department of Chemical Engineering, University of California, Berkeley, California 94720, USA.
Abstract:For proton transfer reactions, the tunneling contributions to the rates are often much larger than thermally activated rates at temperatures of interest. A number of separable tunneling corrections have been proposed that capture the dependence of tunneling rates on barrier height and imaginary frequency size. However, the effects of reaction pathway curvature and barrier anharmonicity are more difficult to quantify. The nonseparable semiclassical transition state theory (TST) of Hernandez and Miller Chem. Phys. Lett. 214, 129 (1993)] accounts for curvature and barrier anharmonicity, but it requires prohibitively expensive cubic and quartic derivatives of the potential energy surface at the transition state. This paper shows how the reaction path Hamiltonian can be used to approximate the cubic and quartic derivatives used in nonseparable semiclassical transition state theory. This enables tunneling corrections that include curvature and barrier anharmonicity effects with just three frequency calculations as required by a conventional harmonic transition state theory calculation. The tunneling correction developed here is nonseparable, but can be expressed as a thermal average to enable efficient Monte Carlo calculations. For the proton exchange reaction NH2 + CH4 <==> NH3 + CH3, the nonseparable rates are very accurate at temperatures from 300 K up to about 1000 K where the TST rate itself begins to diverge from the experimental results.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号