首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Simple universal curve for the energy‐dependent electron attenuation length for all materials
Authors:M P Seah
Institution:Analytical Science, National Physical Laboratory, , Teddington, Middlesex, TW11 0LW UK
Abstract:An analysis is presented for a simple, universal equation for the computation of attenuation lengths (L) for any material, necessary for quantifying layer thicknesses in Auger electron spectroscopy (AES) and X‐ray photoelectron spectroscopy (XPS). Attenuation lengths for selected materials may be computed from the inelastic mean free path (λOpt) computed, in turn, from optical data. The computation of L involves the transport mean free path and gives good L values where values of λOpt are available. However, λOpt values are not available for all materials. Instead, λ may be calculated from the TPP‐2M relation, but this requires the accurate estimation of a number of materials parameters that vary over a wide range. Although these procedures are all soundly based, they are impractical in many analytical situations. L is therefore simply reexpressed, here, in terms of the average Z of the layer which may be deduced from the AES or XPS analysis, the average atomic size a (varies in a small range) and the kinetic energy E of the emitted electron. For strongly bonded materials, such as oxides and alkali halides, a small extra term is included for the heat of formation. A new equation, S3, is established with a root mean square (RMS) deviation of 8% compared with the values of attenuation length calculated from λOpt available for elements, inorganic compounds, and organic compounds. This excellent result is suitable for practical analysis. In many films, an average value of a of 0.25 nm is appropriate, and then L may be expressed only in terms of the average Z and E. Then, L expressed in monolayers, equation S4, exhibits an RMS deviation of 9% for many elements. These results are valid for the energy range 100 to 30 000 eV and for angles of emission up to 65°. Copyright © 2012 Crown copyright.
Keywords:attenuation lengths  elements  IMFP  inelastic mean free path  inorganic materials  organic materials
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号