首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Non-enzymatic browning-induced water plasticization
Authors:Y H Roos  K Jouppila  Bettina Zielasko
Institution:(1) Department of Food Technology, University of Helsinki, PO Box 27 (Viikki B), FIN-00014 Helsinki, Finland;(2) Abteilung Angewandte Physikalische Chemie, Institut für Physikalische und Theoretische Chemie der Technischen Universität Braunschweig, Hans-Sommer-Stra\e 10, D-38106 Braunschweig, Germany
Abstract:An exotherm, observed in differential scanning calorimetry (DSC) scans of amorphous food materials above their glass transition temperature,T g, may occur due to sugar crystallization, nonenzymatic browning, or both. In the present study, this exothermal phenomenon in initially anhydrous skim milk and lactose-hydrolyzed skim milk was considered to occur due to browning during isothermal holding at various temperatures above the initialT g. The nonenzymatic, Maillard browning reaction produces water that in amorphous foods, may plasticize the material and reduceT g. The assumption was that quantification of formation of water from theT g depression, which should not be observed as a result of crystallization under anhydrous conditions, can be used to determine kinetics of the nonenzymatic browning reaction. The formation of water was found to be substantial, and the amount formed could be quantified from theT g measured after isothermal treatment at various temperatures using DSC. The rate of water formation followed zero-order kinetics, and its temperature dependence well aboveT g was Arrhenius-type. Although water plasticization of the material occurred during the reaction, and there was a dynamic change in the temperature differenceTT g, the browning reaction was probably diffusioncontrolled in anhydrous skim milk in the vicinity of theT g of lactose. This could be observed from a significant increase in activation energy. The kinetics and temperature dependence of the Maillard reaction in skim milk and lactose-hydrolyzed skim milk were of similar type well above the initialT g. The difference in temperature dependence in theT g region of lactose, but above that of lactose-hydrolyzed skim milk, became significant, as the rate in skim milk, but not in lactose-hydrolyzed skim milk, became diffusion-controlled. The results showed that rates of diffusion-controlled reactions may follow the Williams-Landel-Ferry (WLF) equation, as kinetic restrictions become apparent within amorphous materials in reactions exhibiting high rates at the same temperature under non-diffusion-controlled conditions.
Keywords:browning  crystallization  glass transition  kinetics  milk powder  water
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号