首页 | 本学科首页   官方微博 | 高级检索  
     

GaP波导型发射器产生频率可调谐太赫兹脉冲
引用本文:刘丰,李毅,石俊凯,胡晓堃,李江,栗岩锋,邢岐荣,胡明列,柴路,王清月. GaP波导型发射器产生频率可调谐太赫兹脉冲[J]. 物理学报, 2012, 61(3): 34210-034210
作者姓名:刘丰  李毅  石俊凯  胡晓堃  李江  栗岩锋  邢岐荣  胡明列  柴路  王清月
作者单位:天津大学精密仪器与光电子工程学院光电信息技术教育部重点实验室,超快激光研究室,太赫兹波研究中心,天津300072
基金项目:国家重点基础研究发展计划(“973"计划)(批准号: 2007CB310408, 2010CB327604, 2011CB808101)、 国家自然科学基金(批准号: 61077083, 61027013, 60838004, 61078028)、高等学校博士学科点专项科研基金 (批准号: 200800560026)、全国优秀博士学位论文作者专项基金(批准号: 2007B34)、 “111"计划(批准号: B07014)和教育部新世纪优秀人才支持计划(批准号: NCET-07-0597)资助的课题.
摘    要:报道了利用脉宽可调的光子晶体光纤飞秒激光放大器抽运矩形波导结构的GaP晶体太赫兹(THz) 发射器产生频率可调谐的超快THz脉冲.非线性晶体中光整流过程产生的THz辐射频率随抽运光脉冲宽度而 变化. GaP波导THz发射器可通过波导的几何尺寸来控制色散,以达到增加有效作用长度和提高输出功率的目的. 不同横截面尺寸的波导型发射器的THz辐射峰值频率随相位匹配条件的改变而改变,加以脉宽调节技术, 可以在大频谱范围获得频谱精细可调的THz脉冲.实验中在1 mm×0.7 mm的波导型THz发射器中获得了 频率可调谐的THz脉冲.提出实现THz辐射频率大范围调谐的GaP波导型阵列发射器的实施方案.

关 键 词:超快太赫兹波  频率调谐  GaP波导  光子晶体光纤飞秒激光
收稿时间:2011-03-15

Frequency tunable terahertz pulses generated from GaP waveguide emitter
Liu Feng,Li Yi,Shi Jun-Kai,Hu Xiao-Kun,Li Jiang,Li Yan-Feng,Xing Qi-Rong,Hu Ming-Lie,Chai Lu and Wang Qing-Yue. Frequency tunable terahertz pulses generated from GaP waveguide emitter[J]. Acta Physica Sinica, 2012, 61(3): 34210-034210
Authors:Liu Feng  Li Yi  Shi Jun-Kai  Hu Xiao-Kun  Li Jiang  Li Yan-Feng  Xing Qi-Rong  Hu Ming-Lie  Chai Lu  Wang Qing-Yue
Affiliation:Ultrafast Laser Laboratory and Center for Terahertz Waves, College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Opto-Electronics Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China;Ultrafast Laser Laboratory and Center for Terahertz Waves, College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Opto-Electronics Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China;Ultrafast Laser Laboratory and Center for Terahertz Waves, College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Opto-Electronics Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China;Ultrafast Laser Laboratory and Center for Terahertz Waves, College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Opto-Electronics Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China;Ultrafast Laser Laboratory and Center for Terahertz Waves, College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Opto-Electronics Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China;Ultrafast Laser Laboratory and Center for Terahertz Waves, College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Opto-Electronics Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China;Ultrafast Laser Laboratory and Center for Terahertz Waves, College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Opto-Electronics Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China;Ultrafast Laser Laboratory and Center for Terahertz Waves, College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Opto-Electronics Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China;Ultrafast Laser Laboratory and Center for Terahertz Waves, College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Opto-Electronics Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China;Ultrafast Laser Laboratory and Center for Terahertz Waves, College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Opto-Electronics Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
Abstract:We report on a frequency-tunable terahertz pulse train generated from a rectangular GaP waveguide emitter pumped by a pulse width tunable femtosecond photonic crystal fiber amplifier. The THz frequency can be tuned by varying the pump pulse duration. The dispersion of the emitter can be controlled via the geometry of the waveguide, and the coherent buildup length can be increased to scale up the output power. Waveguides with different cross sections can be used to tune the THz spectrum. Combined with the pump pulse duration tuning technique, THz pulses with a precisely tunable frequency can be obtained. In the experiment, tunable THz radiation is obtained from a GaP waveguide emitter with a cross section of 1 mm×0.7 mm. Finally, a GaP emitter array is designed to achieve a wider tuning range.
Keywords:ultrafast terahertz wave  frequency tuning  GaP waveguide  femtosecond photonic crystal fiber laser
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号