首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Polymerization of allyl esters of unsaturated acids. V. Cyclopolymerization of methyl allyl fumarate
Authors:Kunio Urushido  Akira Matsumoto  Masayoshi Oiwa
Abstract:The kinetics of radical polymerization of methyl allyl fumarate (MAF) is discussed in terms of cyclopolymerization and compared with the polymerization results of methyl allyl maleate (MAM) as a cis isomer. In the polymerization of MAF, the rate and degree of polymerization were quite enhanced compared with MAM, and gelation occurred at low conversion. The content of the unreacted allylic double bonds of the MAF polymer was quite large; whereas those of the unreacted fumaric double bonds and the cyclic structural units showed reverse tendencies. Only a slight presence of a five-membered ring was observed in the MAF polymer. The cyclization constants KA and KV, the ratios of the rate constants of the unimolecular cyclization reaction to those of the bimolecular propagation reaction of the uncyclized allylic and fumaric radicals, were estimated to be 2.73 and 1.48 mole/liter, respectively. These values suggest the great difference in the cyclopolymerization behavior between two isomeric monomers. These results are discussed in detail in connection with the high reactivity of the fumaric double bond compared to the maleic double bond. In addition, the formation mode and the sequence distribution of the structural units of the polymer produced are discussed on the basis of these analytical results. Thus, for the MAF polymer obtained in the bulk polymerization, about 60% of the cyclic structure can be formed via the intramolecular attack of the uncyclized fumaric radical on the allylic double bond, as opposed to the case of MAM via the predominant intramolecular attack (ca. 90%) of the uncyclized allylic radical on the maleic double bond; these results and the low probability for the succession of cyclic structures and the rather high probability of a vinyl-to-vinyl addition are presented.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号