首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electron in the field of flexural vibrations of a membrane: Quantum time,magnetic oscillations,and coherence breaking
Authors:I V Gornyi  A P Dmitriev  A D Mirlin  I V Protopopov
Abstract:We have studied the motion of an electron in a membrane under the influence of flexural vibrations with a correlator that decreases upon an increase in the distance in accordance with the law r. We have conducted a detailed consideration of the case with η < 1/2, in which the perturbation theory is inapplicable, even for an arbitrarily weak interaction. It is shown that, in this case, reciprocal quantum time 1/τq is proportional to g1/(1–η)T(2–η)/(2–2η), where g is the electron–phonon interaction constant and T is the temperature. The method developed here is applied for calculating the electron density of states in a magnetic field perpendicular to the membrane. In particular, it is shown that the Landau levels in the regime with ωcτq » 1 have a Gaussian shape with a width that depends on the magnetic field as Bη. In addition, we calculate the time τφ of dephasing of the electron wave function that emerges due to the interaction with flexural phonons for η < 1/2. It has been shown that, in several temperature intervals, quantity 1/τφ can be expressed by various power functions of the electron–phonon interaction constant, temperature, and electron energy.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号