首页 | 本学科首页   官方微博 | 高级检索  
     


LOWLAD: a locally weightedL 1 smoothing spline algorithm with cross validated choice of smoothing parameters
Authors:Ken W. Bosworth  Upmanu Lall
Affiliation:1. Department of Mathematics, Idaho State University, 83209-8085, Pocatello, ID, USA
2. Utah Water Research Laboratory, Utah State University, 84322-8200, Logan, UT, USA
Abstract:The computation ofL1 smoothing splines on large data sets is often desirable, but computationally infeasible. A locally weighted, LAD smoothing spline based smoother is suggested, and preliminary results will be discussed. Specifically, one can seek smoothing splines in the spacesWm(D), with [0, 1]nsubED. We assume data of the formyi=f(ti)+epsii,i=1,..., N with {ti}i=1NsubD, the epsii are errors withE(epsii)=0, andf is assumed to be inWm. An LAD smoothing spline is the solution,slambda, of the following optimization problem

$$mathop {min }limits_{g in W_m } frac{1}{N}sumlimits_{i = 1}^N {left| {y_i  - g(t_i )} right| + lambda J_m (f),} $$
Keywords:Least absolute deviations  robust regression  smoothing and regression splines  thin plate splines  lowess  cross validation  nonparametric estimation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号