首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A parallel solver based on the dual Schur decomposition of general finite element matrices
Authors:Denis Vanderstraeten  Roland Keunings
Abstract:A parallel solver based on domain decomposition is presented for the solution of large algebraic systems arising in the finite element discretization of mechanical problems. It is hybrid in the sense that it combines a direct factorization of the local subdomain problems with an iterative treatment of the interface system by a parallel GMRES algorithm. An important feature of the proposed solver is the use of a set of Lagrange multipliers to enforce continuity of the finite element unknowns at the interface. A projection step and a preconditioner are proposed to control the conditioning of the interface matrix. The decomposition of the finite element mesh is formulated as a graph partitioning problem. A two-step approach is used where an initial decomposition is optimized by non-deterministic heuristics to increase the quality of the decomposition. Parallel simulations of a Navier–Stokes flow problem carried out on a Convex Exemplar SPP system with 16 processors show that the use of optimized decompositions and the preconditioning step are keys to obtaining high parallel efficiencies. Typical parallel efficiencies range above 80%. © 1998 John Wiley & Sons, Ltd.
Keywords:domain decomposition  parallel algorithms  finite element  Lagrange multipliers  projected GMRES
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号