首页 | 本学科首页   官方微博 | 高级检索  
     


Model study of the impact of orbital choice on the accuracy of coupled-cluster energies. II. Valence-universal coupled-cluster method
Authors:K. Jankowski,J. Gryniakó  w,K. Rubiniec
Abstract:
The impact of the choice of molecular orbital sets on the results of the valence-universal coupled cluster method involving up to three-body amplitudes (VU-CCSDT) was studied for the H4 model. This model offers a straightforward way of representing all possible symmetry-adapted orbitals. Moreover, the degree of quasi-degeneracy of its lowest 1A1 states can be varied over a wide range by changing its geometry. Calculations were performed both for 13 sets of standard quantum chemical orbitals and for a vast variety of nonstandard orbital sets defined by nodes of a two-dimensional orbital grid. The performance of various standard orbital sets in VU-CCSDT calculations is compared. It is also documented that for every quasi-degeneracy region there exist nonstandard orbital sets which allow one to obtain more accurate VU-CCSDT energies than the standard orbital sets. In an attempt to provide a general interpretation for some of the alternative orbital sets, we defined a set of orbitals which maximize the proximity of the model and target spaces—maximum proximity orbitals (MPO). It is demonstrated that outside the strong quasi-degeneracy region the energies obtained for the VU-CCSDT approach based on the MPOs are more accurate than for the standard orbital sets. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 67: 221–237, 1998
Keywords:coupled-cluster theory  electron correlation effects  molecular orbital choice  reference determinant choice  quasi-degenerate states
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号