Un résultat de consistance pour des SVM fonctionnels par interpolation spline |
| |
Authors: | Nathalie Villa Fabrice Rossi |
| |
Affiliation: | 1. Équipe GRIMM, université Toulouse Le Mirail, 5, allées Antonio-Machado, 31058 Toulouse cedex 9, France;2. Projet AxIS, INRIA-Rocquencourt, domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chesnay cedex, France |
| |
Abstract: | ![]() This Note proposes a new methodology for function classification with Support Vector Machine (SVM). Rather than relying on projection on a truncated Hilbert basis as in our previous work, we use an implicit spline interpolation that allows us to compute SVM on the derivatives of the studied functions. To that end, we propose a kernel defined directly on the discretizations of the observed functions. We show that this method is universally consistent. To cite this article: N. Villa, F. Rossi, C. R. Acad. Sci. Paris, Ser. I 343 (2006). |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|