首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Determination of elastic and plastic mechanical properties of dentin based on experimental and numerical studies
Authors:Xingguo Li  Bingbing An  Dongsheng Zhang
Institution:1. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China; 2. Department of Mechanics, Shanghai University, Shanghai 200444, China; 3. Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai 200072, China
Abstract:The aim of this study is to investigate the change of mechanical properties of human dentin due to aging and spatial variation. Sections of coronal dentin are made from human molars in three groups: young, mid-aged, and old patients. A nanoindentation test is conducted from regions near the pulp to the dentin-enamel junction (DEJ) to evaluate the load-depth indentation response and determine Young's modulus and hardness. Based on the loading and unloading load-displacement curves in nanoindentation, a numerical model of plastic damage is used to study the plastic and the damage behaviors and the contribution to the degradation in the unloading stiffness. The experimental results show that Young's modulus of the inner dentin is significantly lower than that of outer dentin in each age group. Compared with the young dentin, the old dentin has greater hardness and Young's modulus with similar spatial variations. The magnitudes of the yield strength and the damage variable are also affected by aging and vary with spatial locations. In the same age group, the yield strength in inner dentin is lower than those in middle and outer dentin, more damage occurs with similar spatial variations, and the yield strength of young dentin is generally lower and causes more damage compared with those in both the mid-aged and old groups.
Keywords:mechanical property  numerical simulation  nanoindentation  dentin  
本文献已被 SpringerLink 等数据库收录!
点击此处可从《应用数学和力学(英文版)》浏览原始摘要信息
点击此处可从《应用数学和力学(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号