首页 | 本学科首页   官方微博 | 高级检索  
     


Multivariate Time Series Imputation: An Approach Based on Dictionary Learning
Authors:Xiaomeng Zheng,Bogdan Dumitrescu,Jiamou Liu,Ciprian Doru Giurcă  neanu
Affiliation:1.Department of Statistics, University of Auckland, Auckland 1142, New Zealand;2.Department of Automatic Control and Computers, University Politehnica of Bucharest, 060042 Bucharest, Romania;3.School of Computer Science, University of Auckland, Auckland 1142, New Zealand;
Abstract:
The problem addressed by dictionary learning (DL) is the representation of data as a sparse linear combination of columns of a matrix called dictionary. Both the dictionary and the sparse representations are learned from the data. We show how DL can be employed in the imputation of multivariate time series. We use a structured dictionary, which is comprised of one block for each time series and a common block for all the time series. The size of each block and the sparsity level of the representation are selected by using information theoretic criteria. The objective function used in learning is designed to minimize either the sum of the squared errors or the sum of the magnitudes of the errors. We propose dimensionality reduction techniques for the case of high-dimensional time series. For demonstrating how the new algorithms can be used in practical applications, we conduct a large set of experiments on five real-life data sets. The missing data (MD) are simulated according to various scenarios where both the percentage of MD and the length of the sequences of MD are considered. This allows us to identify the situations in which the novel DL-based methods are superior to the existing methods.
Keywords:multivariate time series   missing data   imputation   dictionary learning   information theoretic criteria
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号