首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Influence of nitroxide structure on the 2,5‐ and 2,6‐spirodicyclohexyl substituted cyclic nitroxide‐mediated free‐radical polymerization of styrene
Authors:Fawaz Aldabbagh  Paul Dervan  Marisa Phelan  Karen Gilligan  Desmond Cunningham  Patrick McArdle  Per B Zetterlund  Bunichiro Yamada
Abstract:The 2,6‐spirodicyclohexyl substituted nitroxide, cyclohexane‐1‐spiro‐2′‐(3′,5′‐dioxo‐4′‐benzylpiperazine‐1′‐oxyl)‐6′‐spiro‐1″‐cyclohexane (BODAZ), was investigated as a mediator for controlled/living free‐radical polymerization of styrene. The values of the number‐average molecular weight increased linearly with conversion, but the polydispersities were higher than for the corresponding 2,2,6,6‐tetramethylpiperidinyl‐1‐oxy (TEMPO) and 2,5‐bis(spirocyclohexyl)‐3‐benzylimidazolidin‐4‐one‐1‐oxyl (NO88Bn) mediated systems at approximately 2.2 and 1.6 at 100 and 120 °C, respectively. These results were reflected in the rate coefficients obtained by electron spin resonance spectroscopy; at 120 °C, the values of the rate coefficients for polystyrene‐BODAZ alkoxyamine dissociation (kd), combination of BODAZ and propagating radicals (kc), and the equilibrium constant (K) were 1.60 × 10?5 s?1, 5.19 × 106 M?1 s?1, and 3.08 × 10?12 M, respectively. The value of kd was approximately one and two orders of magnitude lower, and that of K was approximately 20 and 7 times lower than for the NO88Bn and TEMPO adducts. These results are explained in terms of X‐ray crystal structures of BODAZ and NO88Bn; the six‐membered ring of BODAZ deviates significantly from planarity as compared to the planar five‐membered ring of NO88Bn and possesses a benzyl substituent oriented away from the nitroxyl group leading to a seemingly more exposed oxyl group, which resulted in a higher kc and a lower kd than NO88Bn. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3892–3900, 2003
Keywords:radical polymerization  living polymerization  X‐ray  kinetics (polym  )  nitroxide
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号