Abstract: | The reaction enthalpy and reaction heat capacity of three aromatic epoxy–amine systems have been determined with modulated temperature diffential scanning calorimetry (MTDSC), mostly in quasi‐isothermal conditions, over a wide temperature range (33–140 °C) and for different mixture compositions. The reaction enthalpy is only slightly dependent on the epoxy–amine chemistry, from ?111 to ?98 kJ/mol epoxy functionality. With the model system phenyl glycidyl ether (PGE)+aniline, the reaction enthalpy of the secondary amine–epoxy reaction step is equal to that of the primary amine–epoxy reaction. Group contributions needed to calculate the reaction heat capacity with an additivity approach are evaluated, and a new value of 37.2 J mol?1 K?1 for the group N? (H)(C)(CB) is proposed. With this group contribution, the additivity method predicts almost equal values for the reaction heat capacity of both amine–epoxy reaction steps at 298.15 K (ΔrCp,prim = 15.7 J mol?1 K?1 and ΔrCp,sec = 14.6 J mol?1 K?1), whereas the experimental value of ΔrCp,sec is about three times larger than that of ΔrCp,prim at 100 °C. These results are confirmed experimentally for PGE+aniline as a different temperature dependence of both reaction heat capacities. MTDSC therefore is potentially interesting for differentiating between reactive species in an epoxy–amine reaction, a benefit previously assigned to spectroscopic methods only. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 594–608, 2003 |