Abstract: | Composites of poly(propylene carbonate) (PPC) reinforced with micrometric and nanometric calcium carbonate particles were prepared via melt mixing followed by compression molding. The morphology and mechanical and thermal behaviors of the composites were investigated. Static tensile tests showed that the tensile strength, stiffness, and ductility of the composites tended to increase with increasing contents of micrometric calcium carbonate particles. This improvement in the tensile properties was attributed to good interfacial adhesion between the fillers and matrix, as evidenced by scanning electron microscopy examination. However, because of the agglomeration of calcium carbonate nanoparticles during blending, those composites with nanoparticles exhibited the lowest tensile strength. Thermogravimetric measurements revealed that the incorporation of calcium carbonate into PPC resulted in a slight improvement in its thermooxidative stability. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1806–1813, 2003 |