首页 | 本学科首页   官方微博 | 高级检索  
     


Generation and stabilization of ultrafast optical pulse trains with monolithic mode-locked laser diodes
Authors:Shin Arahira  Yukio Katoh  Yoh Ogawa
Affiliation:1. Optical Components Company, Oki Electric Industry Co., Ltd, 550-1 Higashiasakawa, Hachioji, Tokyo, 193-8550, Japan
Abstract:In this paper, we report on the generation and the stabilization of ultrafast optical pulse trains exceeding 100 GHz from monolithic mode-locked laser diodes (MLLDs) combined with some new techniques such as subharmonic synchronous mode-locking (SSML) and repetition-frequency multiplication (RFM) method. Key subjects to increase the pulse repetition frequencies of the MLLDs such as fast absorption recovery and harmonic mode-locking operation are discussed. 500 GHz optical pulse generation from a short-cavity, graded-index separated confinement heterostructure MLLD and THz-rate pulse generation by harmonic mode-locking are reported. We also demonstrate the stabilization of a 160 GHz MLLD by the SSML with subharmonic-frequency optical pulse injection and reveal that the SSML is very promising as a stabilization technique of the ultrafast MLLD beyond the limitations by the electronic device speed. A method to accurately measure the timing jitter of such ultrafast optical pulse train, all-optical down converting using a nonlinear optical device, is also presented. We also mention another choice for ultrafast optical pulse generation using the MLLD combined with a dispersive medium such as an optical fiber. We demonstrate here the generations of stable 84–256 GHz optical pulse trains by the RFM method of the MLLD stabilized by the SSML.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号