首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The chemistry of constrained crown ring systems and fluorescence sensor applications
Authors:Kadarkaraisamy Mariappan  Andrew G Sykes
Institution:1. University of South Dakota, Vermillion, SD, 57069, USA
Abstract:Using anthraquinone as a useful synthetic scaffold and the ability of anthraquinone to form stable intermediate reduction products (i.e. anthrones and anthranols), we have synthesized a wide variety of constrained crown ring systems where the receptor includes several types and patterns of Lewis bases that can tune receptor selectivity for different metal cations. Constrained crown ring systems are defined as macrocycles that contain an intraannular heteroatom, in addition to the normal peripheral Lewis bases that compose the outer ring of the macrocycle. These fluorescence sensors predominantly utilizes the internal charge transfer mechanism to promote fluorescence, but has also led to the development of new photophysical mechanisms, i.e. metal-mediated tautomerization, to selectively detect Zn(II) ion in solution. We are currently pursuing a number of synthetic avenues to incorporate new functional groups and lumophores such that a myiad of different photophysical mechanisms under optimal conditions can be employed to improve solubility, sensitivity and take advantage of the cross pollination of electrochemistry and fluorescence spectroscopy with these sensors which incorporate closely integrated electrochemical, fluorescence and receptor subunits.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号