首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Role of Bound Water on the Energetics of DNA Duplex Melting
Authors:Mrevlishvili  G M  Carvalho  A P S M C  Ribeiro da Silva  M A V  Mdzinarashvili  T D  Razmadze  G Z  Tarielashvili  T Z
Institution:1.Departamento de Química, Faculdade de Ciências, Centro de Investiga??o em Química, CIQ(UP), Rua do Campo Alegre, 687, P-4169-007, Porto, Portugal
;2.Department of Physics, Tbilisi State University, 380028, Republic of Georgia
;
Abstract:A combination of common and low-temperature differential scanning calorimetry (DSC) techniques was used to detect the thermodynamic parameters of heat denaturation and of ice-water phase transitions for native and denaturated DNA, at different low water contents. We suggest that the main contribution to the enthalpy of the process of the heat denaturation of DNA duplex (35±5 kJ/mol bp) is the enthalpy of disruption of the ordered water structure in the hydration shell of the double helix (26±1 kJ/mol bp). It is possible that this part of the energy composes the non-specific general contribution (70%) of the enthalpy of transition of all type of duplexes. For DNA in the condensed state the ratioα=ΔC pS ~2 is smaller than for DNA in diluted aqueous solutions (α≅2–4). This means that there are other sources for the large heat capacity change in diluted solutions of DNA – for example the hydrophobic effects and unstacking(unfolding) of single polynucleotide chains. This revised version was published online in July 2006 with corrections to the Cover Date.
Keywords:DNA  hydration  low-temperature DSC  melting enthalpy of DNA
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号