首页 | 本学科首页   官方微博 | 高级检索  
     

金属有机骨架材料MIL-53(Al)负载钴催化剂的CO催化氧化反应性能
引用本文:谭海燕,吴金平. 金属有机骨架材料MIL-53(Al)负载钴催化剂的CO催化氧化反应性能[J]. 物理化学学报, 2014, 30(4): 715-722. DOI: 10.3866/PKU.WHXB201401221
作者姓名:谭海燕  吴金平
作者单位:Sustainable Energy Laboratory, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
基金项目:国家自然科学基金(21203253)及湖北省自然科学基金(2011CDA070)资助项目
摘    要:采用溶剂法合成了热稳定性高的金属有机骨架材料MIL-53(Al)(MIL:Materials of Institut Lavoisier),用此材料为载体负载钴催化剂用于CO的催化氧化反应,并与Al2O3负载的钴催化剂进行了对比.采用热重-差热扫描量热(TG-DSC)、傅里叶变换红外(FTIR)光谱、X射线衍射(XRD)、N2物理吸附-脱附、透射电子显微镜(TEM)、氢气程序升温还原(H2-TPR)等方法对催化剂的结构性质进行了表征.TG和N2物理吸附-脱附结果表明,载体MIL-53(Al)有好的稳定性和高的比表面积;XRD以及TEM结果表明Co/MIL-53(Al)上负载的Co3O4颗粒粒径(平均约为5.03 nm)明显小于Al2O3上Co3O4颗粒粒径(平均约为7.83 nm).MIL-53(Al)的三维多孔结构中分布均匀的位点能很好地分散固定Co3O4颗粒,高度分散的Co3O4颗粒有利于CO的催化氧化反应.H2-TPR实验发现Co/MIL(Al)催化剂的还原温度低于Co/Al2O3催化剂的还原温度,低的还原温度表现为高的催化氧化活性.CO催化氧化结果表明,MIL-53(Al)负载钴催化剂的催化活性明显高于Al2O3负载钴催化剂,MIL-53(Al)负载钴催化剂在160°C时使CO氧化的转化率达到98%,到180°C时CO则完全转化,催化剂的结构在催化反应过程中保持稳定.

关 键 词:金属有机骨架材料  溶剂热法  MIL-53(Al)  钴催化剂  CO催化氧化  
收稿时间:2013-10-21
修稿时间:2014-01-22

Performance of a Metal-Organic Framework MIL-53(Al)-Supported Cobalt Catalyst in the CO Catalytic Oxidation Reaction
TAN Hai-Yan,WU Jin-Ping. Performance of a Metal-Organic Framework MIL-53(Al)-Supported Cobalt Catalyst in the CO Catalytic Oxidation Reaction[J]. Acta Physico-Chimica Sinica, 2014, 30(4): 715-722. DOI: 10.3866/PKU.WHXB201401221
Authors:TAN Hai-Yan  WU Jin-Ping
Affiliation:Sustainable Energy Laboratory, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
Abstract:Ametal-organic framework (MOF) material MIL-53(Al) (MIL: Materials of Institut Lavoisier) with high thermal stability was prepared by the solvothermal method, and it served as a support material for a cobalt catalyst in the CO oxidation reaction. A comparison between the catalytic performance of the MIL-53(Al) and the Al2O3 support material was carried out to understand the catalytic behavior of the catalysts. The catalysts were characterized by thermogravimetric-differential scanning calorimeter (TG-DSC), Fourier-transform infrared (FTIR) spectroscopy, N2 adsorption-desorption, X-ray diffraction (XRD), transmission electron microscopy (TEM), and hydrogen temperature-programmed reduction (H2-TPR). The TG and N2 adsorption-desorption analyses showed that MIL-53(Al) had good stability and high surface area. XRD and TEM results indicated that the size of the Co3O4 nanoparticles (5.03 nm) supported on MIL-53(Al) was smaller than that (7.83 nm) on the Al2O3 support. The highly dispersed Co3O4 nanoparticles from the three-dimensional porous structure of MIL-53(Al) led to superior catalytic activity during CO oxidation. The H2-TPR spectra showed that the reduction in temperature of the Co/MIL-53(Al) catalyst was significantly lower than that of the Co/Al2O3 catalyst, implying a higher catalytic activity for the Co/MIL-53(Al) catalyst. Indeed, the heterogeneous catalytic composite material Co/MIL-53(Al) catalyst exhibited much higher activity than the Co/Al2O3 catalyst in the CO oxidation test with 98% conversion at 160 ℃ and 100% conversion at 180 ℃. The catalytic activity and structure of the Co/MIL-53(Al) catalyst were stable during the reaction.
Keywords:Metal-organic framework  Solvothermal synthesis  MIL-53(Al)  Cobalt catalyst  CO catalytic oxidation
本文献已被 CNKI 等数据库收录!
点击此处可从《物理化学学报》浏览原始摘要信息
点击此处可从《物理化学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号