首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The orbital stability of periodic motions of a Hamiltonian system with two degrees of freedom in the case of 3:1 resonance
Authors:BS Bardin  
Institution:

aMoscow, Russia

Abstract:The problem of the orbital stability of periodic motions, produced from an equilibrium position of an autonomous Hamiltonian system with two degrees of freedom is considered. The Hamiltonian function is assumed to be analytic and alternating in a certain neighbourhood of the equilibrium position, the eigenvalues of the matrix of the linearized system are pure imaginary, and the frequencies of the linear oscillations satisfy a 3:1 ratio. The problem of the orbital stability of periodic motions is solved in a rigorous non-linear formulation. It is shown that short-period motions are orbitally stable with the sole exception of the case corresponding to bifurcation of short-period and long-period motions. In this particular case there is an unstable short-period orbit. It is established that, if the equilibrium position is stable, then, depending on the values of the system parameters, there is only one family of orbitally stable long-period motions, or two families of orbitally stable and one family of unstable long-period motions. If the equilibrium position is unstable, there is only one family of unstable long-period motions or one family of orbitally stable and two families of unstable long-period motions. Special cases, corresponding to bifurcation of long-period motions or degeneration in the problem of stability, when an additional analysis is necessary, may be exceptions. The problem of the orbital stability of the periodic motions of a dynamically symmetrical satellite close to its steady rotation is considered as an application.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号